INTERNATIONAL INDIAN SCHOOL, RIYADH
 WORKSHEET - 6 CHAPTER-6 WORK, ENERGY AND POWER

1. If stretch in a spring of force constant k is doubled, calculate
a) Ratio of final to initial force in the spring.
b) Ratio of elastic energies stored in the two cases.
c) Work done in changing to the state of double stretch.
2. A man weighing 55 kg supports a body of 20 kg on his head. Calculate work done by him if he moves a distance of 20 m (a) on a horizontal road (b) upon a smooth incline of 1 in 5.(take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
3. A 16 kg block moving on a frictionless horizontal surface with a velocity of $4 \mathrm{~m} / \mathrm{s}$ compresses an ideal spring and comes to rest. If the force constant of spring be $100 \mathrm{~N} / \mathrm{m}$, then how much is the spring compressed?
4. A body of mass m falls from a height h and collides with another body of same mass at rest. After collision, the two bodies combine and move through distance d till they come to rest. Find the work done against the resistive force.
5. A 10 kg ball and a 20 kg ball approach each other with velocities $20 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ respectively. What are their velocities after collision, if the collision is perfectly elastic?
6. A body is constrained to move along the z -axis of a coordinate system is subject to a constant force $\mathbf{F}=(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \mathrm{N}$. What is the work done by this force in moving the body over a distance of 4 m along the z -axis?
7. What is an elastic collision? What will happen, when
(a) A heavy body collides with a light mass at rest.
(b) A light body collides with a heavy mass at rest.
8. A rain drop of radius 2 mm falls from a height of 500 m above the ground. It falls with decreasing acceleration due to viscous resistance of air until half its original height. It attains its maximum (terminal) speed, and moves with uniform speed thereafter. What is the work done by the gravitational force on the drop in the first half and second half of its journey? Take density of water $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What is the work done by the resistive force in the entire journey if its speed on reaching the ground is $10 \mathrm{~m} / \mathrm{s}$?
9. A body of mass 4 kg initially at rest is subject to a force 16 N . What is the kinetic energy acquired by the body at the end of 10 s ?
10. A body of mass 2 kg is resting on a rough horizontal surface. A force of 20 N is now applied to it for 10 sec . parallel to the surface. If the coefficient of kinetic friction between the surfaces in contact is 0.2 , calculate:
a) Work done by the applied force in 10s.
b) Change in kinetic energy of the object in 10 s .
